

Manual de Instalación, Operación y Mantenimiento

Bomba Multietapas Horizontal

Serie VAQ

0.75 - 5.5 HP @ 3450 RPM 115/230 V - 230/460 V

¡IMPORTANTE! - Lea todas las indicaciones en este manual antes de operar o dar mantenimiento a la bomba.

Contenido 2. Aplicación y condiciones 2.1 Aplicación 2.2 Condiciones de operación 3.1 Dibujo dimensional y especificaciones 4.1 Instalación 4.2 Conexión eléctrica 5.2 Verificación del sentido de giro 5.3 Verificaciones previas al arranque **5.4 Frecuencia de arranques** 5.5 Protección contra congelamiento 6. Montaje y desmontaje

7. Solución de problemas

1. Construcción

- La bomba es de tipo **horizontal, multietapas y seccional**. El eje de la bomba es una extensión del eje del motor. Cuenta con **succión axial y descarga radial**.
- Las bombas **serie VAQ** está compuesta por motor, cabezal de succión, cabezal de descarga, difusor, impulsor, cámara de entrada y salida, eje de la bomba y sello mecánico.
- Las **partes principales** de la bomba —difusor, impulsor, cámara de entrada y salida, y eje de la bomba— están fabricadas en **acero inoxidable**.
- El sello mecánico es de carcasa simple, con componentes de carburo de silicio y grafito.
- El tipo de conexión estándar es mediante rosca de tubería (conexión roscada tipo "pipe thread").

2. Aplicaciones y condiciones

Las bombas de la **serie VAQ** son **centrífugas horizontales multietapas no autocebantes**, caracterizadas por su alta eficiencia y bajo nivel de ruido.

2.1 Aplicación

Diseñadas para el bombeo de **líquidos de baja viscosidad, neutros, no explosivos y libres de partículas sólidas o fibras**.

El líquido no debe reaccionar químicamente con los materiales de la bomba. (Los aceites o líquidos con alto contenido de aceite deben ser manejados por tipos de bomba especiales).

Usos típicos:

- Circulación en sistemas de aire acondicionado.
- Sistemas de enfriamiento.
- Tratamiento y purificación de agua.
- Sistemas de limpieza industrial.
- Transferencia, circulación o presurización de líquidos.
- Agua fría y caliente.
- Preparación de soluciones en procesos alimenticios, agrícolas y de bebidas, entre otros.

2.2 Condiciones de operación

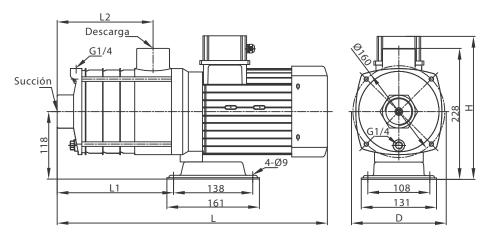
- Temperatura del líquido:
 - ∘ Agua a temperatura normal: -15 °C ~ 70 °C
 - Agua caliente: -15 °C ~ 110 °C
- Rango de caudal: 0.5 28 m³/h
- Presión máxima: 10 bar
- Rango de pH del líquido: 5 a 9
- Temperatura ambiente máxima: +40 °C
- La presión máxima de succión está limitada por la presión máxima de operación.
- Presión mínima de entrada: consulte el catálogo.

PRECAUCIÓN

Cuando se bombee un líquido con **densidad y/o viscosidad superior** a la del agua, se recomienda **utilizar un motor con mayor potencia** para evitar sobrecargas o pérdida de rendimiento.

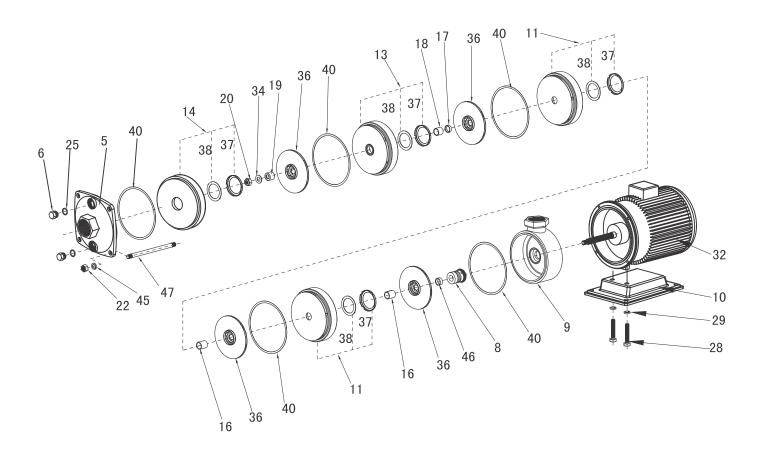
3. Designación del modelo

1/1.5/2 | **VAQ** | 2/4/8/12/16 | ## | ###

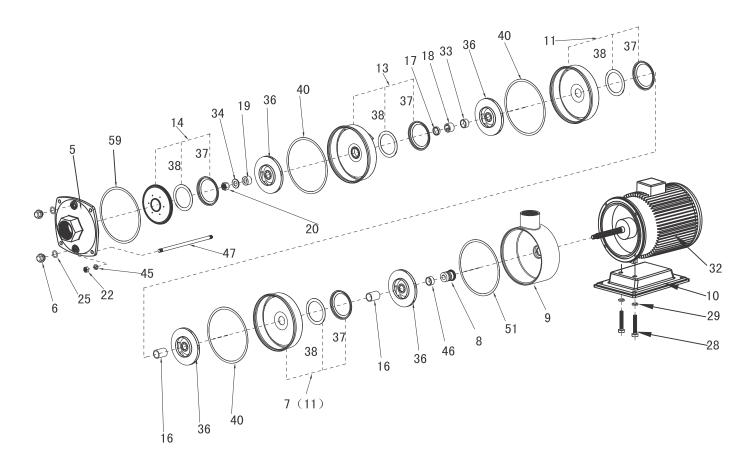

Significado de la designación del modelo, ejemplo: 1VAQ2-50-101

- 1 → Tamaño de **descarga**
- VAQ → Serie de la bomba
- 2 → Caudal nominal (m³/h).
- **50** → Número de **impulsores** (x 10).
- 101 → Número ÷ 10 = potencia. En este caso, es 1 HP
- 101 → Código para designar **voltaje**, 1 para 115/230 V y 3 para 230/460 V

Descripción general


Bomba centrífuga multietapa horizontal de la **serie VAQ**, fabricada con componentes hidráulicos en **acero inoxidable SS 304 o SS 316L**, diseñada para el manejo de líquidos limpios y neutros en aplicaciones industriales, comerciales y de servicios.

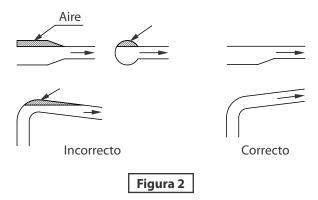
3.1 Dibujo dimensional y especificaciones


					TAMAÑO				DIN	IENSIC	NES (ı	mm)				PESO
MODELO	HP	F	V	Α	S x D	MONOFÁSICO			TRIFÁSICO				(kg)			
					3 X D	L	L1	L2	Н	D	L	L1	L2	Н	D	(kg)
1VAQ2-30-071	0.75	1	115/230	7.2/3.6	1" x 1"	370	105	102	245	185	370	105	102	230	170	9
1VAQ2-50-101	1	1	115/230	9.4/4.7		406	141	138	245	185	406	141	138	230	170	10
1VAQ2-50-103	1	3	230/460	2.98/1.49		406	141	138	245	185	406	141	138	230	170	10
1VAQ2-60-151	1.5	1	230	6.5		465	159	156	260	185	465	159	156	240	170	11
1VAQ2-60-153	1.5	3	230/460	4/2		465	159	156	260	185	465	159	156	240	170	11
1VAQ4-30-131	1.3	1	230	6	1¼" x 1"	395	132	129	245	185	395	132	129	230	170	11
1VAQ4-30-133	1.3	3	230/460	3.74/1.87		395	132	129	245	185	395	132	129	230	170	11
1VAQ4-40-201	2	1	230	8.5		465	159	156	260	185	465	159	156	240	170	12
1VAQ4-40-203	2	3	230/460	5.34/2.67		465	159	156	260	185	465	159	156	240	170	12
1.5VAQ8-20-251	2.5	1	230	10.2	1½" x 1½"	433	142	107	280	188	423	142	107	250	162	19
1.5VAQ8-20-253	2.5	3	230/460	6.54/3.27		433	142	107	280	188	423	142	107	250	162	19
1.5VAQ8-25-303	3	3	230/460	7.6/3.8		460	172	137	280	188	460	172	137	245	171	24
1.5VAQ8-30-503	5	3	230/460	12/6		-	-	-	-	-	493	172	137	265	196	28
1.5VAQ12-15-303	3	3	230/460	7.6/3.8	1½" x 1½"	423	142	107	280	188	430	142	107	255	171	24
1.5VAQ12-20-503	5	3	230/460	12/6		-	-	-	-	-	463	142	107	265	196	27
2VAQ16-30-553	5.5	3	230/460	13/6.5	2" x 2"	-	-	-	-	-	534	213	172	265	196	35

3.2 Dibujo explosionado y lista de partes VAQ 2 / 4

Componentes					
5. Cámara de entrada y salida	22. Tornillo				
6. Tapón	25. Junta tórica (O-ring)				
8. Sello mecánico	28. Tornillo				
9. Descarga	29. Arandela de presión				
10. Placa base	32. Motor				
11. Difusor	34. Arandela				
13. Soporte de difusor (2, 3 etapas W/O)	36. Impulsor				
14. Inductor (pre-impulsor)	37. Cubierta del anillo de desgaste				
16. Manguito del impulsor	38. Anillo de desgaste				
17. Manguito del impulsor (S) (2, 3 etapas W/O)	40. Placa de sello				
18. Cojinete (2, 3 etapas W/O)	45. Arandela de presión				
19. Tapa del primer impulsor	46. Manguito (VAQT W/O)				
20. Tuerca	47. Perno tirante				

3.3 Dibujo explosionado y lista de partes VAQ 8 / 12 / 16



Componentes					
5. Cámara de entrada y salida	28. Tornillo				
6. Tapón	29. Arandela de presión				
8. Sello mecánico	32. Motor				
9. Descarga	33. Manguito del impulsor (L) (1, 2 etapas W/O)				
10. Placa base	34. Arandela				
11. Difusor (VAQT20-1/2/3 W/O)	36. Impulsor				
13. Soporte de difusor (1, 2 etapas W/O)	37. Cubierta del anillo de desgaste				
14. Inductor (pre-impulsor)	38. Anillo de desgaste				
16. Manguito del impulsor	40. Placa de sello				
17. Manguito del impulsor (S) (1, 2 etapas W/O)	45. Arandela de presión				
18. Cojinete (1, 2 etapas W/O)	46. Manguito				
19. Tapa del primer impulsor	47. Perno tirante				
20. Tuerca	51. Placa de sello				
22. Tornillo	59. Placa de sello				
25. Junta tórica (O-ring)					

4. Instalación y conexión

4.1 Instalación

- La bomba deberá de instalarse en un área **bien ventilada**. La distancia entre la bomba y cualquier objeto circundante debe ser de al menos **150 mm**, con el fin de permitir que el motor se enfríe adecuadamente mediante la circulación de aire.
- Para reducir al mínimo la pérdida de carga en la línea de succión, la tubería de entrada debe ser lo más corta posible.
- Asegúrese de que se **instale una válvula check (antirretorno)** en la línea de succión antes de la instalación de la bomba, con el propósito de **evitar el retorno del líquido**.
- La bomba debe **montarse horizontalmente** sobre una base o soporte firme, ya sea en el suelo o en un bastidor fijado a la pared. Debe quedar **bien nivelada y estable**. Evite que el peso de la tubería recaiga sobre la bomba, ya que esto podría **provocar daños o desalineación**.
- Antes de la instalación, verifique que la **tubería de succión esté limpia**. Si se espera la presencia de impurezas en el líquido, se recomienda **instalar un filtro (colador) de 0.5 a 1 mm** de apertura antes de la entrada de la bomba.
- Durante la instalación de la línea de succión, **evite la formación de bolsas de aire**, las cuales pueden afectar el cebado y el rendimiento de la bomba. Consulte el diagrama correspondiente para su correcta disposición. Vea la Figura 2.
- Se recomienda **instalar un manómetro** en la línea de descarga para **monitorear y controlar la operación** de la bomba.
- Si la bomba se instala **a una altura superior al nivel del líquido**, dentro del rango de succión, deberá colocarse **una válvula check (antirretorno)** en el **extremo de la tubería de succión** para evitar el vaciado del sistema.

4.2 Conexión eléctrica

- Las conexiones eléctricas deben ser realizadas únicamente por un electricista calificado.
- Para asegurar que el motor sea adecuado al suministro eléctrico, los cables del motor deben conectarse a la alimentación conforme al diagrama de conexiones indicado en la caja de terminales y a la placa de características del motor.
- El motor debe estar conectado mediante un **arrancador rápido y eficaz**, con el fin de **evitar daños** ocasionados por **falta de fase, fluctuaciones de voltaje o sobrecargas**. Además, el motor deberá **conectarse a tierra de forma segura y confiable**.

PRECAUCIÓN

Antes de retirar la tapa de la caja de terminales o desmontar la bomba, **asegúrese de que la alimentación eléctrica esté completamente desconectada**.

4.3 Cableado - Conexión eléctrica y dispositivos de seguridad

4.3.1 Recomendaciones generales de conexión eléctrica

- Las conexiones eléctricas deben ser realizadas únicamente por personal técnico calificado o un electricista certificado, siguiendo los códigos y normas eléctricas aplicables (por ejemplo, la NOM-001-SEDE vigente en México).
- Antes de efectuar cualquier conexión, verifique que la alimentación eléctrica coincida con el voltaje y la frecuencia nominal del motor indicados en la placa de datos.
- La bomba debe estar **correctamente aterrizada (puesta a tierra)** para garantizar la seguridad del operador y proteger el motor contra descargas eléctricas.
- El **diagrama de conexión** ubicado en la **caja de terminales del motor** debe ser seguido estrictamente para asegurar el sentido de giro correcto y evitar daños eléctricos.
- Antes de retirar la tapa de la caja de conexiones o manipular el cableado, **asegúrese de que la fuente de alimentación esté desconectada**.

4.3.2 Recomendaciones específicas según el tipo de motor

Motores monofásicos 115/230 V - 60 Hz

- Estos motores pueden operar a 115 V o 230 V, según la configuración de las terminales del motor.
- Para funcionamiento a **115 V**, utilice conductores de calibre adecuado al consumo nominal y circuitos protegidos con **interruptor termomagnético** de acuerdo con la corriente indicada en la placa.
- Para funcionamiento a **230 V**, asegúrese de que las terminales estén conectadas conforme al diagrama de doble tensión (alta tensión) dentro de la caja de bornes.
- El cable de alimentación debe seleccionarse de acuerdo con la **corriente nominal** y la **distancia** entre el tablero y la bomba, evitando caídas de tensión superiores al 3 %.
- Es obligatorio incorporar un interruptor de encendido/apagado accesible, así como un dispositivo de protección térmica (guardamotor).

Motores trifásicos 230/460 V - 60 Hz

- Los motores trifásicos de este tipo pueden conectarse en estrella (Y) o delta (Δ) según el voltaje de la red eléctrica disponible:
 - Para 230 V, utilice conexión delta (Δ).
 - Para 460 V, utilice conexión estrella (Y).
- Se recomienda verificar la **rotación correcta del motor** (la bomba debe girar en sentido **antihorario**, visto desde el ventilador del motor). Si el sentido de giro es incorrecto, **invierta dos fases** en la conexión de alimentación.
- Cada unidad debe estar equipada con un guardamotor (relé térmico) ajustado según la corriente nominal del motor.
- Instale un **interruptor termomagnético o disyuntor** de protección general para prevenir sobrecorrientes y cortocircuitos.
- En instalaciones con **potencia superior a 5.5 HP**, se recomienda el uso de un **arrancador magnético con protección contra pérdida de fase y sobrecarga**.

4.3.3 Dispositivos mínimos de seguridad eléctrica

De acuerdo con las normas de seguridad eléctrica industrial, el sistema de alimentación de la bomba debe incluir al menos los siguientes elementos:

- Interruptor de emergencia accesible y claramente identificado.
- **Interruptor termomagnético o disyuntor** como dispositivo de desconexión y protección contra sobrecorriente.
- **Protección contra sobrecarga del motor** (relé térmico o quardamotor).
- Puesta a tierra adecuada de la carcasa del motor y gabinete de control.
- Cables y conectores certificados de capacidad acorde a la corriente nominal.

Tabla de recomendaciones de conexión eléctrica							
Motores trifásicos – 230 V / 460 V – 60 Hz							
Potencia (HP)	Tensión (V)	Corriente nominal (A)	Calibre de conductor (AWG Cu)*	Interruptor termomagnético (A)**	Guardamotor / Relé térmico (A)***		
0.5	230 / 460	1.6 / 0.8	16	5	1.6 – 2.0		
0.75	230 / 460	2.3 / 1.2	16	6	2.0 – 2.5		
1	230 / 460	3.2 / 1.6	14	10	2.8 – 3.5		
1.5	230 / 460	4.4 / 2.2	14	10	4.0 – 5.0		
2	230 / 460	6.0 / 3.0	12	15	5.5 – 6.5		
3	230 / 460	8.2 / 4.1	12	20	7.5 – 9.0		
4	230 / 460	10.6 / 5.3	10	25	9.5 – 11.5		
5.5	230 / 460	13.8 / 6.9	10	32	12.0 – 14.0		
7.5	230 / 460	18.0 / 9.0	8	40	16.0 – 19.0		

^{*} Calibre de conductor (AWG Cu): basado en distancia máxima de 20 m y caída de tensión < 3 %. Aumente el calibre si la distancia es mayor.

^{***} Guardamotor / relé térmico: ajuste en el rango que cubra la corriente nominal del motor.

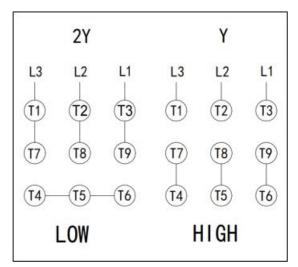


Figura 3 - Diagrama de conexiones

Recomendaciones complementarias

- Verifique siempre la **placa de datos del motor** para confirmar corriente nominal exacta y configuración de bornes.
- En redes de 230 V, use conexión Δ (delta); en redes de 460 V, use conexión Y (estrella).
- Todos los equipos deben estar correctamente aterrizados.
- Para potencias mayores a 5.5 HP, se recomienda instalar un arrancador magnético con protección contra pérdida de fase y sobrecarga.
- En caso de variaciones de tensión mayores al ± 10 %, consulte al fabricante antes de operar.

^{**} Interruptor termomagnético (breaker): tipo C, curva estándar IEC o su equivalente NEMA.

5. Arranque, operación y mantenimiento

PRECAUCIÓN

Está **prohibido operar la bomba sin líquido**, ya que esto provocará daños en el **sello mecánico** y en los **cojinetes deslizantes**.

5.1 Llenado de la bomba

- No encienda la bomba hasta que se haya llenado completamente con agua o con el líquido de trabajo.
- Llene la bomba utilizando el **sistema de llenado inverso**.
- Cierre la válvula de descarga, **libere el aire** mediante el **tornillo de purga** ubicado en la cabeza de la bomba y abra lentamente la válvula de succión hasta que el agua fluya de manera continua por el orificio de purga. Posteriormente, **vuelva a apretar el tornillo**.
- Si el nivel del líquido se encuentra **por debajo de la bomba**, llénela completamente antes del arranque. Asegúrese de que tanto la bomba como las tuberías estén **llenas de líquido y libres de aire** antes de iniciar la operación.

5.2 Verificación del sentido de giro

Conecte la alimentación eléctrica y **verifique la dirección de giro observando el ventilador del motor**. Visto desde el lado del motor, la bomba debe **girar en sentido antihorario**.

5.3 Verificaciones previas al arranque

Antes de poner en marcha la bomba, realice las siguientes comprobaciones:

- Verifique que la bomba esté **firmemente instalada, fijada y nivelada**.
- Asegúrese de que la bomba esté **llena de líquido** y que el flujo sea **libre y continuo**.
- Verifique que el voltaje de alimentación sea estable.
- Confirme que el motor y la bomba giren sin dificultad ni ruidos anormales.
- Revise que todas las tuberías estén correctamente conectadas y que puedan suministrar agua sin obstrucciones.
- La **válvula de entrada** debe estar completamente **abierta**.
- La válvula de descarga debe abrirse gradualmente después del arranque.
- Verifique la **presión de operación**, en caso de contar con un manómetro instalado.
- Compruebe todos los **controles del sistema**. Si la bomba está controlada mediante un **presostato**, ajuste correctamente las **presiones de arranque y paro**.
- Asegúrese de que la corriente total del motor no exceda el valor máximo permitido indicado en la placa de características.

5.4 Frecuencia de arranques

- Evite arrancar la bomba con demasiada frecuencia, ya que esto puede reducir la vida útil del motor y de los componentes eléctricos.
 - Para motores con potencia **menor o igual a 5.5 HP**, el número máximo de arranques recomendados es de hasta 100 por hora.
 - Para motores con potencia superior a 5.5 HP, no debe excederse de 20 arranques por hora.
- Durante el funcionamiento, mantenga el caudal dentro del rango de 0.5 a 1.3 veces el caudal nominal.
- La bomba debe **operar sin ruidos anormales**. Si se presentan vibraciones o sonidos inusuales, **detenga inmediatamente el equipo**, identifique la causa y realice la reparación correspondiente.

5.5 Protección contra congelamiento

La bomba puede utilizarse en sistemas que cuenten con **medidas anticongelantes**. Si la instalación se encuentra en un entorno con riesgo de bajas temperaturas, añada **anticongelante adecuado al líquido del sistema** para prevenir daños en los componentes internos.

Si no se utiliza anticongelante, **no deje la bomba llena de líquido** durante periodos prolongados de inactividad o en condiciones de heladas. En estos casos, **drene completamente el cuerpo de la bomba** después de detener la operación.

5.6 Verificaciones periódicas

Para garantizar un funcionamiento seguro y prolongar la vida útil del equipo, se recomienda realizar una inspección periódica de la bomba VAQ, considerando los siguientes aspectos:

- Verifique la **presión de operación** y el **rendimiento hidráulico** de la bomba.
- Compruebe la **ausencia de fugas** en las conexiones y sellos.
- Revise si existe **sobrecalentamiento del motor**.
- Realice la **limpieza o sustitución** de los **filtros o coladores**, en caso de que estén instalados.
- Verifique el correcto funcionamiento del temporizador o protector térmico del motor.
- Controle la frecuencia de arranques y paros.
- Revise el estado y la calibración de los **controles eléctricos y de seguridad**.

Si se detecta alguna anomalía, **consulte la sección "Solución de problemas"** para realizar los ajustes o reparaciones necesarias.

Cuando la bomba no vaya a utilizarse durante un tiempo prolongado, l**ímpiela, séquela y almacénela en un lugar seco y protegido**, evitando la exposición a humedad o contaminantes que puedan causar corrosión o deterioro.

6. Montaje y desmontaje

- Monte la **placa de sello** sobre el motor y coloque el **sello mecánico**, asegurándose de **lubricar las superficies de contacto** del mismo.
- Instale los **impulsores**, **difusores y demás componentes** siguiendo el orden indicado en el plano de ensamblaje. Coloque la **cubierta del primer impulsor**, apriete las tuercas correspondientes y asegúrese de **instalar los anillos de sello en cada difusor**.
- Monte el **cabezal de succión** y los **pernos de sujeción (***stay bolts***)**, apretando las tuercas firmemente.
- Una vez ensambladas todas las piezas, **gire el ventilador del motor manualmente** para confirmar que el eje **gira libremente y sin obstrucciones**.
- Para desmontar la bomba, **invierta el procedimiento anterior**, asegurándose de mantener las piezas limpias y en orden durante el desmontaje.

7. Solución de problemas

PRECAUCIÓN

Antes de retirar la **tapa de la caja de terminales** o realizar cualquier **desmontaje o manipulación** de la bomba, **asegúrese de que la alimentación eléctrica esté completamente desconectada**.

7.1 Tabla de diagnóstico y solución de fallas

Falla	Causa probable	Solución recomendada	Observaciones
	1. Falla en el suministro eléctrico.	1. Verifique el suministro eléctrico.	
	2. Fusibles fundidos.	2. Sustituya los fusibles.	
	2 Materials	3. Revise el sistema y elimine la	
	3. Motor sobrecargado.	sobrecarga.	
El motor no arranca al encenderio	A Los contactos principales del		_
El motor no arranea ar encenaem	arrancador no hacen buen contacto	4. Sustituya el arrancador del motor.	
	o la bobina está defectuosa.	4. Sustituyu er arraneador der motor.	
	o la bobilla esta delectuosa.		
	5. Circuito de control defectuoso.	5. Revise el circuito de control.	
	6. Motor dañado.	6. Repare o reemplace el motor.	
	1. Fusibles fundidos.	1. Sustituya los fusibles.	
	2. Contactos del dispositivo de	2. Revise el arrancador del motor.	
El dispositivo de sobrecarga del	sobrecarga defectuosos.		En los casos 4 y 5,
arrancador se activa	3. Conexión de cables floja o	3. Verifique cables y alimentación	no desarme la
inmediatamente al encender la	defectuosa.	eléctrica.	bomba usted
bomba	4. Devanado del motor dañado.	4. Reemplace el motor.	mismo.
	5. Bomba bloqueada	5. Revise y repare la bomba.	
	mecánicamente.	, ,	
	1. Ajuste del dispositivo de	1. Ajuste nuevamente el nivel de	
El dispositivo de sobrecarga se	sobrecarga demasiado bajo.	sobrecarga.	
dispara ocasionalmente	2. Fallas intermitentes en el	2. Verifique el suministro eléctrico.	_
-	suministro eléctrico.	·	
	3. Bajo voltaje en horas pico.	3. Instale un regulador de voltaje.	
El arrancador del motor no se ha	1. Los contactos del arrancador no		
disparado, pero la bomba no	hacen buen contacto o la bobina	1. Sustituya el arrancador del motor.	_
funciona	está defectuosa.	2. Desire el circuite de control	1
	2. Circuito de control defectuoso.	2. Revise el circuito de control.	
	1. La tubería de succión es	1. Aumente el diámetro de la tubería	
	demasiado pequeña.	de succión.	1
	2. Insuficiente suministro de agua en la entrada.	2. Mejore el sistema e incremente el	
	3. Nivel de líquido demasiado bajo.	suministro de agua. 3. Eleve el nivel del líquido.	1
El agua bombeada no fluye de	4. Presión de entrada de la bomba	5. Lieve ei filvei dei liquido.	_
manera constante	demasiado baja en relación con la	4. Mejore el sistema y aumente la	
	temperatura del agua, pérdidas en	presión de entrada.	
	la tubería o caudal.	presion de entrada.	
	5. Tubería de succión parcialmente	5. Limpie la tubería y elimine las	1
	obstruida por impurezas.	impurezas.	
	1. La tubería de succión está	1. Verifique y limpie la tubería de	
	obstruida por impurezas.	succión.	
	2. La válvula de pie o la válvula	2. Revise y repare la válvula de pie o	1
La bomba funciona pero no	check está cerrada.	válvula check.	
descarga agua		3. Verifique y repare la tubería de	1 -
	3. Fugas en la tubería de succión.	succión.	
	4. Presencia de aire en la bomba o	4. Llene nuevamente la bomba y	1
	en la línea de succión.	elimine el aire del sistema.	
	aa mica de sacción.		l

7.1 Tabla de diagnóstico y solución de fallas (continuación)

Falla	Causa probable	Solución recomendada	Observaciones		
	1. Fugas en la tubería de succión.	1. Revise y repare la tubería de succión.			
La bomba gira en sentido inverso	2. La válvula de pie o válvula check está defectuosa.	2. Revise y repare la válvula de pie o válvula check.			
al apagarse	3. La válvula de pie queda parcialmente abierta o atascada.	3. Verifique y repare la válvula de pie.	_		
	4. Presencia de aire en la línea de succión.	4. Revise la línea de succión, elimine fugas y purgue el aire.			
	1. Fugas en la tubería de succión.	1. Revise y repare la tubería de succión.			
Vibración o ruido anormal en la	2. La tubería de succión es demasiado pequeña o está parcialmente obstruida por impurezas.	2. Aumente el diámetro o limpie la tubería de succión.	En el caso del punto 5, no desarme la bomba usted		
bomba	3. Presencia de aire en la bomba o en la línea de succión.	3. Llene nuevamente la bomba y purgue el aire del sistema.			
	4. Desajuste entre la altura de descarga del sistema y la capacidad de la bomba.	4. Mejore el sistema o seleccione un modelo de bomba más adecuado.	mismo.		
	5. Bomba bloqueada mecánicamente.	5. Revise y repare la bomba.			

8. Aviso importante

- **1.** La bomba **VAQ** cuenta con una **garantía de 2 años** a partir de la fecha de compra, siempre que opere bajo condiciones normales y con el modelo adecuado. Las **partes sujetas a desgaste** no están incluidas en la garantía.
- **2.** El usuario será **responsable de cualquier daño** ocasionado si desmonta o manipula la bomba por cuenta propia durante el periodo de garantía.

Estimado cliente:

Le agradecemos su preferencia y esperamos que disfrute del desempeño superior y la confiabilidad de nuestras bombas **serie VAQ**.

Gracias por su confianza.

GARANTÍA DE BOMBAS, MOTOBOMBAS Y ELECTROBOMBAS

Garantizamos al comprador inicial, durante el período de 12 meses a partir de la fecha de compra, cada bomba, motobomba y electrobomba nueva vendida por nosotros, contra defecto de manufactura.

Nuestra garantía está limitada únicamente a reemplazar o reponer la parte o partes de nuestra fabricación que resulten defectuosas con el uso normal del equipo. En los motores y partes que no son de nuestra fabricación, hacemos extensiva por nuestro conducto la garantía del fabricante original.

Esta garantía queda sin efecto en los siguientes casos: si el equipo ha sido desensamblado, si ha sufrido alteración o mal uso, si ha sido conectado a circuitos eléctricos de características diferentes a las indicadas en su placa, o si ha sido conectado sin la protección adecuada.

NO seremos responsables bajo esta garantía, por daños y/o perjuicios de cualquier índole, ni tampoco seremos responsables de cualquier tipo de gasto o flete derivado, relacionado, o como consecuencia de la reposición o reparación de las partes o piezas defectuosas.

Tampoco asumimos ni autorizamos a ninguna persona o entidad, a tomar en nuestro nombre, cualquier otra obligación o compromiso relacionado con nuestras bombas.

